
How Much Rain We Can Store

Calculate the amount of Rain water you can store

Runoff Coefficients for type of material of roof

Supposing you live in a family of four in Pune in a house with asbestos roof of size 5m x 5m.

Annual average rainfall	=	722 mm (for Pune)
Area of roof	=	25 m ²
Runoff coefficient	=	0.8 (for Asbestos)
Water available from roof top	N= N	Annual rainfall (in mm) x Area of roof (in m²) x Coefficient of runoff for the roof
		722 x 25 x 0.8
	S=8	14440 Litres
Per capita availability	=	Availability / No. of Persons
		14400 / 4
	=	3610 Litres per Capita
Per day per capita availability	\=\{	Per capita availability / No. of Days in a year
	=	3610/365
	=	Say 10 Litres Per Capita Per Day
Per capita drinking water demand in Urban area	8=8	5 Litres Per Capita Per Day

As is clear from this example Rooftop Rainwater Harvesting can be a great option to meet the household drinking water demands, the only constraint being the storage options available.

Next Chapter >> **Design of Roof Top RWH System**